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ABSTRACT -- We have analyzed cor tical and subcor tical field 
recordings from spatiall y distinct neural circuits in order to  
suppor t the hypothesis that spatially distinct brain locations display 
corre lated ictal activity dur ing epileptic seizures. Field recordings 
have been obtained from cor tex (CTX), anterior thalamic nuclei 
(AN), posterior thalamus (PT) and hippocampus (HPC) dur ing 
pentylenetetrazol (PTZ) seizures in anesthetized animals. We use 
Wavelet Transform Cross-Corre lation (WTCC) method in order to 
quantify the common activity between two recordings at par ticular 
bands of interest. In contrary to Four ier Transform Coherence 
(FTC), we show that WTCC provides a more reliable estimate of 
band-specific common activity or cr oss-coherence between two  
epileptic sources. Although most of the signal power is located at 
higher frequencies (15-30Hz), results from WTCC reveal significant 
mean cross-corre lation  estimates (~0.7-0.8) at pr imar il y the lower 
regions of the spectrum (0-10Hz). The behavior observed in the 
brain recordings analyzed in this paper lets us differentiate between 
local and global behavior ,  where the global behavior is assumed to 
be due to a pacemaker function which is a quasi-periodic train  of 
impulse functions that differentiall y excites var ious areas of the 
brain.  

Index Terms – Cross-corre lation analysis, epilepsy, propagation, 
wavelet analysis 

I . INTRODUCTION 
 The studies of the network mechanisms of epilepsy over the 
last several decades has focused largely on the cerebral cortex, 
the hippocampus and the thalamus.  The cerebral cortex and 
hippocampus have a natural inclination to generating large, 
synchronized bursts of activity underlying many forms of 
seizures due to strong recurrent excitatory connections, the 
presence of intrinsicall y burst-generating neurons, interactions 
among closely spaced neurons and synaptic plasticity [1]. The 
thalamus also plays a significant role in the potentiation of 
seizures [2]. 
 Although the precise epileptic pathways underlying epileptic 
seizure activity remain largely unknown, some strong neural 
pathway evidence for a unique thalamocortical pathway is 
present. Through lesioning, autoradiographic, pharmacologic and 
electrical stimulation studies,  Mirski et al. have discovered  that 
the mammillothalamic tract and its associated nuclei specificall y 
the anterior thalamus (AN) provide a propagation pathway 
during pentylenetetrazol (PTZ)-induced seizure activity. In 
addition to the physiological evidence, there have been varied 
uses of signal coherence in EEG studies for identification of 
aff ili ated brain centers during the seizure activity [3,4]. Sherman 
at al., using partial coherence estimation techniques, have shown  
significant coherence results between EEG signals  recorded 
from AN and CTX. Both ordinary and partial coherence 
measures based upon the  periodogram show statistical evidence 
in favor of a strong AN-CTX association [5]. 
 In this study, we provide a different approach to confirm the 
interactions between spatiall y distinct brain centers and to be 
able to make the assumption of a globally propagating signal 

considered to be the underlying mechanism of the epileptiform 
activity observed at each brain recording. Our approach relies on 
coherence analysis using wavelets to verify that the brain centers 
where the field recordings are made have correlated and/or time-
locked activity in accordance with the model shown in Fig. 1. 
Since our cross-coherence estimation method is based on 
wavelets, first we attempt to provide reasons for our choice of 
wavelets as opposed to Fourier transform by demonstrating the 
contrast between the cross-coherence estimation of two methods 
on real EEG data. Continuous Wavelet Transform (CWT), being 
a large set of band-pass filters, will allow us to focus on the time-
locked components in order to establi sh a reliable cross-
coherence estimation of two brain signals. 

 
 
Figure 1. A systematic view of ictal discharge propagation mechanism. The 
pacemaker signal sequentially activates spatially distinct neural circuits. Each 
circuit produces characteristic impulse response in the field recording. The 
physiological properties and the current activity state of the underlying tissue 
determines the impulse morphology.   
 

II . METHODS 
 The wavelet transform is a signif icant advancement in time-
frequency analysis of signals such as EEG.  It has certain 
advantages over Fourier transform techniques, since it does not 
require use of an infinite data window in dealing with sinusoids. 
Windowing is an important issue when dealing with signals 
similar to EEG that contain features that differ significantly in 
duration and frequency content over time.  
 There are reasons now to rely on wavelets for the estimation 
of cross-coherence across two brain centers. Here, we would li ke 
to define the cross-coherence between two signals as the band-
specific cross-correlation. That is, by specific averaging in the 
frequency domain, we estimate the cross-correlation of specific 
range of oscill ations. The proposed cross-coherence estimation 
approach is based on the assumption that two interacting brain 
centers display non-sinusoidal oscill ations, e.g. time-locali zed 
spikes and waves.  Superimposing spike-wave signal 
morphology on sinusoids, as in Fourier Transform, will unli kely 
reflect the actual frequency content, and therefore, the 
periodogram technique would not be a feasible alternative for 
cross-coherence estimation of brain recordings. On the other 
hand, the CWT allows us to enhance specific band of frequencies 
using signal reconstruction while achieving good time resolution 
in order to compute band-specific cross-correlation [6].  
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A. Wavelet Analysis     
 We define the i th band reconstructed signal defined in the 
continuous wavelet transform domain scale interval 
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This is equivalent to dyadic decomposition of the function 
f t L( ) ( )∈ ℜ2 into a total of N bands. The traditional frequency 

bands of interest in EEGs are shown in Table 1. 
 
B. Cross Wavelet Transform 
 
 Wavelet transform of time domain cross-correlation of two 
signals is equivalent to cross-correlation  of the wavelet 
transform of each signals. 
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 Rather than computing cross-correlation functions in the 
CWT plane at every scale, we would li ke to perform a dyadic 
averaging of frequencies or signal reconstruction as in (1) and 
compute cross-correlations across the reconstructed signals from 
different sources. Then, at a particular band i , the cross-
correlation function of two signals f and g is, 
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where d is the lag range. 
 The improved cross-correlation estimation can be attributed 
to the fact that wavelet transform with an appropriate scale can 
be considered an approximation of matched filtering, which 
extracts the deterministic signal and filters out noise and 
interference. The observed quasi-periodicity in the recorded brain 
signals suits this scenario very well . wavelet scales 
corresponding to consistent signal morphologies will enhance 
them in the continuous wavelet transform domain. By separating 
the signal into distinct bands of frequencies, we hope to increase 
the signal to noise ratio at particular bands to differentiate 
consistent signals from random fluctuations. 
 
C. Cross Wavelet Coherence 

 At this moment, the ith band time-varying wavelet 

coherence, c tf g i, , ( ) , of  f t( ) and g t( )  is 
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As seen in the equation, a sliding window of length 2∆t  ([-.4 ≤ 
d ≤ .4] sec) is applied throughout the signal  period being 
analyzed. 
  

TABLE I. The traditional frequency 
bands are often specified as δ (less than 4 
Hz), θ (4-7 Hz),   α (7-15 Hz), β (15-31 
Hz), and γ activity (above 31 Hz). There 
is much physiological and statistical 
evidence for the independence of several 
of these bands, but their boundaries can 
vary to some extent according to  the 
particular experiment being considered 
and they can be adjusted as required. 
 
 

     
 Finall y, we need to indicate the reasons of obtaining a time-
varying coherence function and how we perform this operation. 
It is unreasonable to expect the same physiological behavior of 
the seizure activity to last for a long time. During an ictal 
discharge epoch lasting 8-10 secs, the dynamic behavior of the 
epileptic neural circuits may change in seconds [7]. Based on this 
assumption, we have developed an interest in a correlation 
function that would actuall y express the activity level of a seizure 
pathway connecting two brain structures at a chosen interval of 
time. For this purpose, we have applied a moving- average (MA) 
window to the CWT-reconstructed signals. The cross-coherence 
estimation inside each sliding window corresponds to one point 
in the correlation function of time. The sampling rate is 1000 Hz 
at each channel and the MA window is square and 800 points or 
0.8 sec long. The window sliding speed is 50 points.   
 For the demonstration of the contrast between FFT and 
CWT coherence, we have used averaging windows of length 800 
points in analyzing ictal discharge recordings of 4000 points 
long. The matlab ‘cohere’ function with Hamming analysis 
window of 256 points long and with sliding velocity of 50 points 
is used to estimate cross-coherence inside the averaging window. 
Then, frequency averaging is done to represent cross-coherence 
based on the frequency ranges shown in Table 1. Similar to 
wavelets, we obtain a time-varying cross-coherence function 
where each averaging window corresponds to a single point in 
the FFT-based cross-coherence function of time. Square 
averaging window of 800 points is used for wavelet coherence. 
We would li ke to note here that temporal resolution is achieved 
with the same analysis window in FFT. In wavelets, temporal 
resolution is already achieved by the specific morphology of the 
scaling function.  
 
D. Experimental Setup 
 Male Sprague-Dawley rats (N=2) purchased from Charles 
River, Wilmington, MA, weighing 250-300 g were anesthetized 
with halogen/oxygen and placed on a stereotaxic frame. All three 
animals had EEG recorded from AN and PT nuclei and 
transcortical sites. These animals had additional depth-electrodes 
placed in hippocampus. Two epidural electrodes were placed 
behind bregma. Depth electrodes were implanted as follows: 
AN-1.5-mm posterior to bregma (AP), 1.5 mm lateral to midline 
(L) and 6.0 mm ventral to cortical surface (D); PT-4.3-mm AP, 
1.5-mm L and 6.0-mm D; hippocampus-4.5-mm AP, 4.0-mm L 
and 2.6-mm D. Durelon liquid glue and powder were used to 
hold electrodes and pedestal in place. 
  On the day of primary surgery, CTX screw electrodes were 
implanted under anesthesia. After an induction period of 2.5% 
halothane AN, PT and HPC twisted pair electrodes are implanted 

Wave 
Numb
er 

Frequenc
y Range 

Band 
Symbo
l 

8 0-4 Hz δ 
7 4-7 Hz θ 
6 7-15 α 

5 16-31 β 
4 31-63 γ 
3 64-127 NA 
2 128-255 NA 



at their respective locations. Dental cement is used to secure 
animals. The animals were allowed to recover for a minimal of 
two days. On the day of experiment, animal was placed under 
halothane and paralyzed with pancurouium. Blood pressure was 
monitored through a femoral artery and ECG was monitored.  
PTZ administered at a rate of 5.5 mg/kg/min after a 15min 
baseline EEG recording. Data was sampled at 1000Hz after being 
analog filtered to 300Hz.   
  

III . RESULT S 
 
 In this section, we first demonstrate  that our WTCC is a 
consistent method, as opposed to  FFT, in measuring the 
common or coherent activity between two brain recordings. 
Having developed the WTCC method in the methodology 
section, we will present the results from the application of this 
method to  cortical and subcortical field recordings.     
 Shown in Fig. 2. is a single epoch of the recorded field 
potentials from cortex, hippocampus, anterior thalamic nuclei 
and posterior thalamus. The recording is 16 seconds long for 
each channel and ictal discharges start at around 3 seconds and 
terminate at around 14 seconds. 
 
A. Wavelet vs. FFT Simulation Results 
 A signal correlated to itself must produce the maximum 
autocorrelation value of 1 at all frequency bands under any 
analyzing  windows of any length.  We have compared 
periodogram coherence and wavelet coherence by computing the 
coherence of the AN signal with itself after addition of 
uncorrelated noise. Our results confirm that degradation of 
correlation value with periodogram coherence estimation is much 
more dramatic than WTCC under different noise amplitudes. 

 
Figure 2. 4 channel EEG and depth recordings from cortex, hippocampus, 
anterior thalamic nuclei and posterior thalamus during the PTZ-induced seizure. 
Seizure starts at around 3 secs and ends at around 14 secs.  Amplitudes at all 
channels are normalized so that each has a maximum amplitude of 1.   
 
    The simulation of time-varying coherence with addition of 
uncorrelated noise can be stated as below,   

f f n

f f n

c t if n n

AN AN

AN AN

f fAN AN

1

2

1 2

1

2

1 21 0 0

= +
= +

< ≠ ≠
,

( )       &   

   (7) 

 
 
 

Table 2. Wavelet auto-coherence estimation vs. 
FFT 

SNR ∞  1 0.5 0.1 
Wavelets 1 0.92 0.85 0.65 0-4Hz 
FFT 1 0.93 0.84 0.10 
Wavelets 1 0.99 0.96 0.68 4-7Hz 
FFT 1 0.95 0.86 0.15 
Wavelets 1 0.99 0.97 0.64 7-15Hz 
FFT 1 0.95 0.85 0.17 
Wavelets 1 0.93 0.82 0.43 16-31Hz 
FFT 1 0.89 0.71 0.08 
Wavelets 1 0.89 0.74 0.32 32-63Hz 
FFT 1 0.65 0.37 0.08 

 
 The results of the AN auto-coherence test under different 
noise power confirm that WTCC is more immune to noise than 
FTC. (see Table 2).  
 
B.  WTCC Results    
 Having confirmed the strength of WTCC over FTC in 
analyzing cross-coherence between EEG data, we have estimated 
cross-coherence across different brain centers via WTCC.  The 
results show that there  is  a  distinguishable  coherence  increase  
at  all pairs of channels or pathways during the transition from 
interictal to ictal period (0.2-0.4’s (data not shown) during 
interictal period to 0.8-0.9s during the ictal period (see table III) .  
 In Fig. 3, we show the results from wavelet power 
estimation  that gives us an idea about the distribution of signal 
power  over a range of frequencies at each channel.  Significant 
signal power is located at 16-31 frequency range for all channels.   
 

 
 
Figure 3. Power distribution of different channels over different frequency 
intervals during seizure ictal discharge activity. 16-31 Hz  range contains the 
most power in all channels.   
 
 In Table 3. we show mean cross-coherence values for 
different range of frequencies during ictal period. Although the 
16-31 Hz frequency range contains most of the power at all 
channels, significant cross-correlations above 0.7 exist mostly at 
lower frequencies, 0-7Hz. In addition, at 16-31Hz (both animals) 
and 7-15Hz (one animal) frequency band where primary signal 
powers are located, we observe a clear CTX and AN association 
whereas CTX-PT is being discriminated. These are only meant to 
be preliminary results and more animals need to be analyzed. 

 
IV.  DISCUSSION 

 
In order to avoid problems associated with 

nonstationarities present in the EEG data, we preferred to use 
wavelets rather then the periodogram for cross-coherence 
estimation of two signals from different brain locations.  As the 

  16secs 



result from AN auto-coherence simulations indicate, WTCC is a 
better alternative for estimating the cross-coherence of two non- 
stationary signals. There is a distinguishable difference between 

the results from WTCC and FTC where we correlated a seizure 
recording from AN to itself with addition of  uncorrelated noise. 
This provides us the motivation to rely on wavelets for 
investigation of a possible link between two bio-signals that are 
nonstationary under most circumstances. 
 We have observed a distinguishable cross-coherence 
increase of varying amounts at different channels. Low (~0.3) 
inter-ictal cross-coherence function values reach 0.9’s during 
ictal discharge periods in almost all channels. In addition, 
constructing a cross-coherence function of time has allowed us to 
monitor trends of cross-coherence for different pathways.  
 The results in Table III confirm that the recordings from AN, 
CTX, HPC and PT show significant level of lower-band (0-
10Hz) cross-coherence in the ictal phases of the seizure activity. 
Although we expected to see higher cross-correlation results at 
the regions of the spectrum (16-31 Hz) where relatively more 
signal energy is concentrated, primary correlations exist at lower 
bands (0-10hz). High frequency bands (30Hz and higher) 
contained the lowest power and the lowest cross-correlation 
results. Furthermore, when we look at the 7-30Hz frequency 
range containing a significant percent of the signal powers we 
observe a higher CTX-AN aff ili ation than CTX-PT.  
 Furthermore, these results let us propose a distinction 
between local and global behavior. That is, spatiall y distinct 
brain centers are aff ili ated with each other solely at lower 
frequency bands, while higher-amplitude local behavior is 
uncorrelated and located at higher-frequency bands. From one 
perspective, we may suggest that local behavior is triggered by 
the global behavior or the global pacemaker signal.    In other 
words, we may state the hypothesis that the brain locations where 
the recordings are made display coherent activity driven by a 
global signal propagating via physiologicall y or synapticall y 
connected structures in the brain. A large scale coherent neural 
network consisting of criti cal centers of the brain, e.g. 
hippocampus, anterior thalamic nuclei and cortex, may be 
present further indicating that seizure propagation pathways 
involve components of the circuit of Papez  [8]. 

Although we observe a significant cross-coherence increase 
at the ictal phase of the seizure, the maximum achieved cross-
coherence values differ at each pathway. While at some 

pathways, e.g., CTX-AN, coherence values reach above .9 (data 
not shown), at some other pathways, e.g. AN-PT, HPC-PT, the 
cross-coherence values fluctuate at lower values. While the 
cross-coherence values are significant, the relative magnitude of 
them may provide us insight about the functional distance 
between two brain locations. In other words, the coherence value 
may be an indicator of a direct or indirect link between two brain 
centers whose epileptic activity is analyzed. Finall y, although the 
data is not shown, cross-correlation estimation functions (3) 
maximize at non-zero delay values supporting the existence of 
propagation phenomenon.  
 The behavior observed in the EEG recordings analyzed in 
this paper lets us make the proposition that the primary 
epileptogenic zone of unknown location acts as a global 
discharge initiator. We are also able to make the assumption that 
the generated discharge signal is carried to cortical and 
subcortical brain centers via synaptic connections where it 
produces quasi-periodic activity of diverse signal morphology 
depending on the type and the physiological state of the 
underlying neural tissue.  
 

III .CONCLUSION 
 

We have shown that the cross-coherence estimation method 
derived from wavelet transform can help us identify brain 
elements that are coherently involved in the seizure activity. The 
level of coherence obtained is suggested to be a potential 
indicator of functional distance between two brain centers, e.g. 
PT is less aff ili ated to CTX than AN. Finall y, we showed 
significant ictal period cross-coherence values achieved using 
WTCC as a potent method for non-stationary bio-signal analysis.  
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Table III : Mean ictal period cross-
coherence for two animals 

 
 
PATHWAY 0-4 

Hz 
4-7 
Hz  

7-15 
Hz 

16-31 
Hz 

32-63 
Hz 

64-127 
Hz 

AN-CTX 0.63 0.82 0.77 0.68 0.32 0.29 
AN-HPC 0.78   0.76 0.75 0.57 0.41 0.35 
AN-PT 0.63  0.73 0.51 0.51 0.33 0.32 
CTX-PT 0.76 0.87 0.49 0.53 0.44 0.31 
 
AN-CTX 0.69 0.71 0.56 0.60 0.45 0.35 
AN_HPC 0.66 0.60 0.58 0.53 0.37 0.33 
AN-PT 0.84 0.73 0.57 0.48 0.31 0.32 
CTX-PT 0.72 0.69 0.56 0.52 0.40 0.30 
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